
M-Estimation (A Practicing Statisticians Best Friend)





What is M-Estimation?

I M-Estimation is an estimation technique similar to Maximum Likelihood
Estimation or Least Squares Estimation.

I In fact, both MLEs and LSEs are special cases of M-estimators.
I The general theory (of unbiased estimating equations) was explored in the 1960s by

various authors.
I Provides an incredibly flexible framework for practical implementation of

estimation, and asymptotic analysis.
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What is an M-Estimator

An M-estimator, θ̂, is an estimator for some parameter θ, which is given by the
solution to a set of equations,

n∑
i=1

U(Yi ; θ̂) = 0.

For instance, S(θ) = ∂
∂θ `(θ) =

∑n
i=1

∂
∂θ log(f (y ; θ)) is the Score function, which we

solve S(θ̂) = 0 for the MLE.

For least squares estimators, we wish to minimize L(θ) =
∑n

i=1(g(Yi) − h(θ))2, for
some suitable g(·), h(θ), which by defining L′(θ) =

∑n
i=1(g(Yi) − h(θ))h′(θ), is given by

L′(θ̂) = 0.



Why do we care?

I The general theory of M-estimators is very powerful.

I Suppose that θ0 is a value such that, E [U(Yi ; θ0)] = 0. Then

I θ̂ is consistent for θ0.
I θ̂ will have an asymptotic distribution of

N(θ0,A(θ0)−1B(θ0)A(θ0)−1′
).

I Here we have

A(θ0) = E
[

− ∂

∂θ
U(Yi ; θ)

∣∣∣∣
θ=θ0

]
,

and
B(θ0) = E [U(Yi ; θ0)U(Yi ; θ0)′] .

I That is, if the estimating equation is unbiased, then we automatically know the
asymptotic distribution of the estimator!
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Example 1

We can take U(Y, θ) = ∑n
i=1 Yi − θ.

The estimator θ̂ will be the sample mean!



Example 2

We can take

U(Y, θ) =
n∑

i=1

 Yi − θ1
(Yi − θ1)2 − θ2

 .
These will be consistent moment estimators, for E [Yi ] and

var(Yi)!



Example 3

We have seen that E [S(θ)] = 0 for the score function.
Let’s consider what the asymptotic distribution of MLEs are

then!



Example 4

When reviewing GLMs we discussed quasi-likelihood estimation, in
which we defined

U(Yi , µi) = Yi − µi

φV (µi)
,

and then solved
n∑

i=1

∂µi

∂β
U(Yi , µi) = 0,

for β.



Why Bother?

I In this course we will see M-estimators a few more times!

I If you go on in Statistics, they will come-up time and time again.
I It is quite rare to see them covered, despite their prevalence.
I They also provide an interesting tool to solve problems: if you can frame an

estimation problem through estimating equations, the theory is easy to derive!
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In Practice

In R we can implement these with any root finding package!

For specific problems, the type of interest to us, we will almost always use specially
designed tools (like glm or lm)!



A Note on Theory

There are further restrictions on U, other than unbiasedness. These regularity conditions
are typically ignored, but are critically important for the asymptotic results to hold!


